gp.py
- Gaussian Processes¶
Routines for optimizing the GP hyperparameters for a given light curve.
-
everest.gp.
GP
(kernel, kernel_params, white=False)¶
-
everest.gp.
GetCovariance
(kernel, kernel_params, time, errors)¶ Returns the covariance matrix for a given light curve segment.
Parameters: - kernel_params (array_like) – A list of kernel parameters (white noise amplitude, red noise amplitude, and red noise timescale)
- time (array_like) – The time array (N)
- errors (array_like) – The data error array (N)
Returns: The covariance matrix
K
(N,*N*)
-
everest.gp.
GetKernelParams
(time, flux, errors, kernel='Basic', mask=[], giter=3, gmaxf=200, guess=None)¶ Optimizes the GP by training it on the current de-trended light curve. Returns the white noise amplitude, red noise amplitude, and red noise timescale.
Parameters: - time (array_like) – The time array
- flux (array_like) – The flux array
- errors (array_like) – The flux errors array
- mask (array_like) – The indices to be masked when training the GP. Default []
- giter (int) – The number of iterations. Default 3
- gmaxf (int) – The maximum number of function evaluations. Default 200
- guess (tuple) – The guess to initialize the minimization with. Default
None
-
everest.gp.
NegLnLike
(x, time, flux, errors, kernel)¶ Returns the negative log-likelihood function and its gradient.